TABLE OF CONTENTS

2.0 – INSTALLATION GUIDE ... P. 2-3
2.1 – USEFUL TOOLS & MATERIALS P. 2-4
2.2 – PRODUCT HANDLING & PLACEMENT P. 2-5
 2.3 – INSTALLATION .. P. 2-7
 2.3.1 – SHORING ... P. 2-8
 2.3.2 – BEAM FORMS & FLOOR PANELS........... P. 2-10
 2.3.2.1 – SPLICE CONNECTIONS P. 2-11
 2.3.3 – ICF WALLS.. P. 2-12
 2.3.3.1 – ICF INTERIOR BEARING WALLS ... P. 2-16
 2.3.4 – CAST-IN-PLACE CONCRETE WALLS P. 2-19
 2.3.5 – CONCRETE BLOCK WALLS P. 2-24
 2.3.6 – WOOD AND STEEL STUD WALLS........ P. 2-28
 2.3.7 – STEEL BEAMS.. P. 2-29
 2.3.8 – CONCRETE BEAMS P. 2-30
 2.3.9 – WOOD BEARING BEAMS P. 2-32
 2.3.10 – UTILITIES ... P. 2-33
 2.3.10.1 – SERVICE PENETRATIONS.......... P. 2-34
 2.3.10.2 – SERVICE ATTACHMENTS.......... P. 2-35
 2.3.11 – WATERPROOFING................................... P. 2-36

<table>
<thead>
<tr>
<th>FortRuss. Performance forming with EPS</th>
<th>2 – 1</th>
</tr>
</thead>
</table>

www.beaverplastics.com

October 2010
DISCLAIMER
By using the FORTRUSS Product Manual, in part or in whole, the user accepts the following terms and conditions.

The FORTRUSS Product Manual shall be used for the sole purpose of estimating, design or construction of the FORTRUSS Floor System used in residential, commercial or industrial structures.

The information represented herein is to be used as a reference guide only. The user shall check to ensure the information provided in this manual, including updates and amendments, meets local building codes and construction practices by consulting local building officials, construction and design professionals, including any additional requirements.

Beaver Plastics Ltd. reserves the right to make changes to the information provided herein without notice and assumes no liability in connection with the use of this manual including modification, copying or distribution.

The user shall check to ensure that any construction projects utilizing the FORTRUSS Product Manual includes the latest updates/amendments (related to the version of the FORTRUSS Product Manual being used at the time of the construction project). Contact your local Fortruss representative for updates/amendments to the FORTRUSS Product Manual.
The simple design and efficiency of Fortruss offers a number of ways the system can be installed for any type of building. This section outlines recommended basic installation instructions.

Always consult a local licensed engineer to review and approve the design and construction of the Fortruss system.
2.1 – USEFUL TOOLS & MATERIALS

- Drill
- Electric and hand saw
- Screws
- Hot knife
- Step ladder
- Rebar bender/cutter
- Internal vibrator
- Contractor-grade foam gun
- Sheet metal pliers
- Low expansion foam adhesive
- Approved scaffold planks
- Transit or laser
- 48” (1220mm) level
- Bolt cutters
- String line
- Chalk line
- Temporary shoring (safety compliant)
- Rebar chairs and tie wire
Fortruss is extremely lightweight, making it easy to handle and place. The thick Panels and metal clad Beam Forms minimize damage from handling.

Fortruss components are shipped to the building site directly from the factory, or through your local distributor.

Fortruss components arrive on site with:

- Drawing layouts showing component placement
- Engineering details for rebar placement
- Shoring requirements and concrete mix design (shoring requirements should be reviewed and approved by a locally licensed engineer)

In addition, the Beam Forms arrive on site stacked, bundled, and wrapped for easy handling.

Unloading Fortruss components can be accomplished by manual lifting or using alternate lifting equipment. The Floor Panels and Beam Forms can be unloaded with 2 people. A 3-person crew is recommended for unloading longer beam lengths of 15 to 20 feet.
When handling Fortruss, it is a good idea to also keep the following in mind:

- Lay the Panels and Beam Forms flat when transporting the floor system components
- Tie the Fortruss components down during transport to ensure the components are well secured, and avoid damage from strap materials.
- Randomly check the dimensions of a few Panels and beam parts when the components arrive on site. This helps to ensure it meets the required dimensions. However, in the unlikely event that floor components are out of spec, please contact your local Beaver Plastics representative immediately.

Beam Forms are available in common length increments. Refer to the layout provided as multiple short Beam Forms are often cut from longer lengths. Beam Forms can be trimmed to length on site. The use of a thin cut metal abrasive wheel in a hand held angle grinder, or a gas powered abrasive wheel cut off saw are also commonly used. A small framers square and permanent marker is handy for marking beams to be cut.
Installation of Fortruss follows six basic steps:

STEP 1: Prepare the wall and/or beams that will be supporting the Fortruss floor.

STEP 2: Erect shoring to support the Beam Form.

STEP 3: Install the Fortruss Beam Forms.

STEP 4: Install the Fortruss Panels.

STEP 5: Place reinforcement

STEP 6: Pour the concrete

The steps outlined above will vary slightly depending on the structural support system used for Fortruss (i.e., ICF, CMU, convention concrete wall, etc), which is addressed in the following sections of this guide.
2.3.1 – SHORING

The amount of shoring required will depend on the floor span, floor depth, and loading conditions. In general, the following guidelines should be followed.

- Use shoring supports that extend the full width of the Beam Forms. 2 x 6 planks, or wider, are recommended to bear the floor system during the concrete pour.
- When the concrete pour includes both the beam forms and slab, erect shoring at rows not more than 6 feet on center.
- When the concrete pour consists of only the beam forms, erect shoring at rows not more than 12 feet on center.
- Shoring should also be placed wherever Beam Form intersections are located.
- Shoring should remain in place, in most cases, for at least 1 week after concrete curing begins.
- Crews can work on an assembled Fortruss deck before placing concrete, and without shoring, provided the spans are less than 10 feet. Longer spans require temporary shoring in place before crews are allowed to work on the deck.

The shoring pattern used to support Fortruss should be reviewed and approved by a locally licensed engineer.

When only the beams are poured shoring will normally not be required again when the slabs are placed provided the beams have cured fully. This allows plumbers, electricians, mechanical contractors and other subtrades the freedom to do all the rough-in work throughout the
entire building without conflicting with the pour schedule.

Once subtrades complete rough-ins, the slabs can be placed and finished inside where protected from potential weather complications.

Commercially manufactured shoring is available for purchase or rent from most rental outlets, or temporary framed beams and walls can be constructed and dismantled for each project.
Installation of Beam Forms and Panels along the edge of the floor will vary depending on the wall type supporting Fortruss, which is discussed in further sections of this manual.

The following guidelines are common to all construction types using Fortruss.

- Panels sections less than 2 feet should be glued to adjacent Beam Forms and Floor Panels.
- Rain water buildup in Beam Forms can be drained by drilling 1/4 inch holes at 2 feet on center along the under side of Beam Forms.
- Attachments to the underside of the Beam Forms before concrete is placed and set should be avoided to prevent sagging of the beam jackets. Instead, attach to the sides of the Beam Forms if possible, or support the Beam Forms to prevent sagging.
2.3.2.1 – SPLICE CONNECTIONS

Beams forms typically arrive on the job site in 15 to 20 feet lengths. In order for Beam Forms to span longer lengths splice connections are required.

STEP 1: Create the splice using the 18 inch long splice connector.

STEP 2: Secure the splice connector by fastening screws to the sides of adjoining Beam Form ends. To avoid interference with shoring support and ceiling finishes, avoid fastening screws at the underside of the Beam Forms.
ICF WALLS
Regardless of the ICF system being used, the installation procedure will be the same.

STEP 1: WALL PREPARATION
Preparing the ICF wall will depend on whether the wall terminates or continues above Fortruss

- Cut out sections of the ICF wall where the Beam Forms will sit.

The shape of the removed ICF sections should match the Beam Form to ensure that the Beam Forms fit snugly into the ICF wall. This will help keep the Beam Forms in place, minimize distortion of the ICF, and minimize concrete bleeding between the ICF and Beam Forms during the pour.

Since the beams are spaced at 24 inches on center, it is possible to pre-cut the ICF forms before placing on the wall.

Depending on the building section additional preparation may be required, as noted below.

ICF Walls Continuous above the Slab Level
- Build the ICF wall to a height just above the top of slab. This will help maintain a continuous top edge of both the inside and outside panels of the ICF wall system, which will facilitate building up the ICF after the slab has been poured.
Transition to Different Wall Type
In applications where the walls continue above the floor system into a different wall type (i.e., framed wall on top of slab)

- Trim the ICF interior wall panels down to the level of the Floor Panels to allow the concrete slab to be integral with the ICF wall.
- Use a Taper Top form for the top course to provide additional bearing support for top plate installation.

Roof Deck
In applications where the Fortruss will form a roof deck

- Trim both the interior and exterior ICF panels down to the level of the Floor Panels.

This allows the slab to cover the top of the wall system, and is usually formed with an overhang and drip ledge beyond the finished exterior face of the wall.

STEP 2: BEAM INSTALLATION

- Begin by cutting the beam to length. The total length of the Beam Form is calculated by measuring the clear span from inside face to inside face of concrete wall, and adding an additional 2 inches (the ends of the Beam Forms should sit on the full thickness of the ICF form panels and extend an additional one inch into the concrete wall face).
• After the Beam Forms are cut to length, remove the EPS foam in the Beam Form ends that will connect to the ICF wall. Remove at least 1 inch of the EPS from the end of the metal jacket. (The face of the EPS in the Beam Form should be flush with the inside face of the ICF form panels).

• Snip the bottom two corners of the beam jacket back 1 inch and bend the cut piece of the metal jacket down to form a lip that will hook on the inside of the ICF EPS form.

This should result with the EPS foam in the Beam Form being flush with the inside of the ICF form panel, and each side of the metal beam jacket projecting 1 inch into the concrete wall cavity.

The bottom of the metal jacket should hook over the ICF form panel preventing concrete from leaking out under the form as well as keeping the Beam Form stable on the ICF wall.

STEP 3: SHORING INSTALLATION
See Section 2.3.1 for shoring installation.

STEP 4: PANEL INSTALLATION
• Place the Panels between the Beam Forms.

This will create the deck on which the concrete will be placed forming the slab.
STEP 5: REBAR PLACEMENT

- Place the reinforcement for beam and slabs, as required by design.
- Place 90 degree bent bars in the wall system to tie into Fortruss either by wet-setting, or drill and epoxy if dry-setting.

Reinforcement for Fortruss should be reviewed and approved by a locally licensed engineer.

STEP 6: CONCRETE PLACEMENT

Placing concrete can be done Monolithic with the floor beams and slabs, or done as two separate pours.

Depending on the pour sequence, the amount of shoring and rebar must be checked by a locally licensed engineer to ensure adequate shoring and dowels are used.

Slabs in areas where potential water seepage to the space below is a concern will need to be water proofed. Several methods of creating a water barrier are discussed in Section 2.3.11.
STEP 1: WALL PREPARATION
Install Fortruss as described in the previous section.

Interior ICF bearing walls can be built to support Fortruss from both sides of the wall.

If the bearing wall does not continue above Fortruss the ICF bearing wall can be formed to the height of the bottom of the Beam Forms. This minimizes the amount of cutting in the ICF wall.

STEP 2: BEAM INSTALLATION
- Cut the beam to length and prepare each end by removing the EPS in the beam back 1 inch from the end of the metal jacket.
- Snip the bottom two corners of the beam jacket back 1 inch and bend the cut piece of the metal jacket down to form a lip that will hook on the inside of the ICF EPS form.

This should result with the EPS foam in the Beam Form being flush with the inside of the ICF form panel, and each side of the metal beam jacket projecting 1 inch into the concrete wall cavity.

The bottom of the metal jacket should hook over the ICF form panel preventing concrete from leaking out under the form as well as keeping the Beam Form stable on the ICF wall.
- Place the Beam Forms such that the Beam Forms will sit in line on both sides of the ICF wall. This will allow the steel and panels to ‘run through’ over the wall.
STEP 3: SHORING INSTALLATION
See Section 2.3.1 for shoring installation.

STEP 4: FLOOR PANEL INSTALLATION
 • Place the Floor Panels between the Beam Forms.

This will create the deck on which the concrete will be placed forming the slab.

If the top of the ICF wall is flush with the underside of the Beam Forms then the Floor Panels can be conveniently installed directly on the ICF bearing wall.

STEP 5: REBAR PLACEMENT
 • Place the reinforcement for beam and slabs, as required by design.
 • Place 90 degree bent bars in the wall system to tie into Fortruss either by tying, wet-setting, or drill and epoxy if dry-setting.

Reinforcement for Fortruss should be reviewed and approved by a locally licensed engineer.

STEP 6: CONCRETE PLACEMENT
Placing concrete can be done Monolithic with the floor beams and slabs, or done as two separate pours.

Depending on the pour sequence, the amount of shoring and rebar must be checked by a locally licensed engineer to ensure adequate shoring is used.
2.3.3.1 – ICF INTERIOR BEARING WALLS
CONTINUED

From the top of the floor deck the bearing wall will be open through the space between the beam ends for 10” wide by the core width of the wall. When placing concrete pour through each space until concrete is up to the next beam opening this will eliminate any possible concrete voids between the beams at the top of the ICF bearing wall.

Prior to placing concrete install sleeves through the ICF wall between the Beam Forms to accommodate mechanical or electrical runs.
Fortruss can be used with conventional cast-in-place concrete walls. Installation of Fortruss will depend whether the walls will be poured monolithically with Fortruss, or as two separate pours. And if the walls will terminate or continue above Fortruss.

STEP 1: WALL PREPARATION

Walls Poured Monolithic with Fortruss

Typically, the ends of the Beam Forms are supported on top of one side of the wall form. As a result, the side of the wall form that supports the Beam Forms will be shorter than the opposite side of the wall form by at least the depth of the Fortruss form work and slab thickness.

- Provide a lumber ledger along the top edge of the form work to provide addition bearing support for the Beam Forms.

This is typically required if plywood wall forms are used. Forms with edge frames require no additional bearing support for the Beam Forms to rest on.

The exterior wall form must be rigid enough to prevent excessive deflection during concrete placement. Bracing can be added to prevent this from happening.

Walls Poured Prior to Fortruss Installation

When cast-in-place walls are completed before Fortruss is installed, the Fortruss will need to sit on top of the concrete wall, or into a ledge formed in the concrete wall.
2.3.4 – CAST-IN-PLACE CONCRETE WALLS
CONTINUED

Fortruss Installed on Ledge Formed in Concrete Wall

- Create a ledge or corbel in the concrete wall to support the Fortruss beam ends.

A minimum 3 inch bearing ledge is required, but will depend upon the span and the loads imposed upon the slab. However, a 4 inch ledge is easier to work with and will take greater loads from the connected slab.

Fortruss installed on Top of Wall

- Install temporary forms around the exterior perimeter of the walls. This will act as formwork for the edge of the slab.

Walls Continuous above the Slab Level
in cases where the concrete wall above and below the floor depth is the same width, and Fortruss is installed into a blocked out ledge, the height of the block out should be a minimum of 6 inches for the Beam Forms to fit without modification, and a maximum height equal to the total depth of the beams, Panels and slab.

Walls Continuous above the Slab Level
If the concrete wall is to continue above the Fortruss deck then both sides of the wall form will be in place as below the Fortruss forms minimizing top of wall deflection.
STEP 2: BEAM INSTALLATION
Installing the Beam Forms will depend on whether the walls will be poured monolithically with Fortruss, or as two separate pours.

Walls Poured Monolithic with Fortruss
- Install the beams as outlined in Step 2 for ICF wall installation.

Walls Poured Prior to Fortruss Installation
If the walls are prepared such that a concrete ledge in the wall is provided to bear the beam ends
- cut the beam end to fit snug against walls on top of the ledge.
- remove the EPS and metal jacket along the bottom of the beam to provide full bearing contact between the ledge and underside of the beam. Be sure to cut back the EPS at a 45 degree angle.

STEP 3: SHORING INSTALLATION
See Section 2.3.1 for shoring installation.

STEP 4: PANEL INSTALLATION
- Place the Panels between the Beam Forms. This will create the deck on which the concrete will be placed forming the slab.
- Install Panel Blockouts or glue in blockouts where the wall meets the floor, if the walls are poured Monolithic with Fortruss. This will block out the area between the Beam Forms and the underside of the Panels.
2.3.4 – CAST-IN-PLACE CONCRETE WALLS
CONTINUED

Walls Poured Prior to Fortruss Installation
If the walls are prepared such that a concrete ledge in the wall is provided to bear the beam ends, Panel Blockouts are not required.

STEP 5: REBAR PLACEMENT
• Place the reinforcement for beam and slabs, as required by design.
• Place 90 degree bent bars in the wall system to tie into Fortruss either by wet-setting, or drill and epoxy if dry-setting.

Reinforcement for Fortruss should be reviewed and approved by a locally licensed engineer.

STEP 6: CONCRETE PLACEMENT
Placing concrete can be done monolithic with the walls, floor beams and slabs, or done as separate pours.

Depending on the pour sequence, the amount of shoring and rebar must be checked by a locally licensed engineer to ensure adequate shoring and dowels are used.

When concrete is placed, the wall forms should be filled to the top first allowing concrete to run into the beam ends before the beams voids are filled. This will minimize the pressure against the wall forms when the beams are poured.
ADDITIONAL NOTES
The following additional notes should be considered during installation:

- Minimum spacing of 4 inches between the end of Fortruss and the exterior wall will help prevent the beam or Panel components from breaking through the exterior wall surface and becoming exposed.

- When Blockout Panels are used chamfer the Panels back at 45 degrees to provide better load distribution from the floor to the wall.

- Vertical rebar dowels placed when the walls were poured, or drilled into the top of the wall, and bent into Fortruss is required to tie the wall to the floor system.
Fortruss can be used with concrete block walls. Installation of Fortruss will depend whether the walls will be poured monolithically with Fortruss, or as two separate pours. And if the walls will terminate or continue above Fortruss.

STEP 1: WALL PREPARATION

Block Walls Poured Monolithic with Fortruss

Fortruss Beam Forms are normally set into pockets cut in the concrete block. This works especially well when the block is to continue above the top of the Fortruss slab.

Fortruss installed on top of Wall

When concrete block walls are completed before Fortruss is installed Fortruss will need to sit on top of the concrete block.

- Place temporary forms around the exterior perimeter of the walls to increase the wall height to the top of the floor slab and maintain concrete on the exterior face of the wall.

Roof Deck

In applications where Fortruss will form a roof deck the slab will extend to the outside perimeter of the block walls.
STEP 2: BEAM INSTALLATION

Fortruss Installed on Top of Wall

- Place the Beam Form component on the concrete block wall at least the required bearing width.
- Chamfer the EPS material in the bottom of the beam end at 45 degrees to provide proper bearing on the wall.
- Provide a minimum 4 inch space between the end of the beams and the exterior face of wall. This will prevent the Beam Forms or Floor Panels from breaking through the exterior wall surface and becoming exposed.

Walls Continuous above the Slab Level

The inside face of the concrete block is only removed where the Beam Forms will connect to the wall.

- Cut the beam to length adding the thickness of the concrete block wall plus 1 inch.
- Snip the bottom two corners of the beam jacket back 1 inch and bend the cut piece of the metal jacket down to form a lip that will hook on the inside of the block wall.

This should result with the EPS foam in the beam form being flush with the inside face of the block wall, or chamfered, and each side of the metal beam jacket projecting 1 inch into the block wall cavity.

The bottom of the metal jacket should hook over the block wall preventing concrete from leaking out under the form as well as keeping the Beam Form stable on the wall.
STEP 3: SHORING INSTALLATION
Shoring requirements will differ depending if Fortruss will be poured together with the block walls or after the block walls are poured and set.

- Place additional shoring close to the concrete block walls to prevent the weight of the concrete in the beams from breaking portions of the concrete block.
- The shoring adjacent to the concrete block walls can be removed within 24 hours once the concrete between the block cores and Beam Forms has set.
- Maintain intermediate shoring until sufficient strength has developed.

See Section 2.3.1 for shoring installation.

STEP 4: PANEL INSTALLATION
- Place the Panels between the Beam Forms.

This will create the deck on which the concrete will be placed forming the slab.

Walls Continuous above the Slab Level
Place the Panels tight to the inside face of the concrete block when the concrete block wall continues up above the top of slab.

Fortruss Installed on Top of Wall
Blockout Panels are best used at the beam ends to close the space between beams below the Panels.
When Blockout Panels are used chamfer the Panels back at 45 degrees to provide better load distribution from the floor to the wall.

STEP 5: REBAR PLACEMENT

- Place the reinforcement for beam and slabs, as required by design.
- Place 90 degree bent bars in the wall system to tie into Fortruss either by wet-setting, or drill and epoxy if dry-setting.

Reinforcement for Fortruss should be reviewed and approved by a locally licensed engineer.

STEP 6: CONCRETE PLACEMENT

Placing concrete can be done Monolithic with the walls, floor beams and slabs, or done as separate pours.

Depending on the pour sequence, the amount of shoring and rebar must be checked by a locally licensed engineer to ensure adequate shoring and dowels are used.

- When concrete is placed, the concrete block wall cavities should be filled to the top first allowing concrete to run into the beam ends before the Beam Form voids are filled.

Slabs in areas where potential water seepage to the space below is a concern will need to be water proofed. Several methods of creating a water barrier are discussed in Section 2.3.11.
2.3.6 – WOOD AND STEEL STUD WALLS

Although, wood and steel stud framed walls can be designed to support a suspended slab, they offer little in way of fire resistance contributing to premature structural failure in the event of a fire.

Wood or steel stud framed walls are best used only as partition of curtain walls not required to carry structural loads.

When wood stud frame wall systems are used concrete must not come in direct contact with wood. Whether stud frame walls are used as a mid-span support where the Fortruss beams and Floor Panels run through unbroken above or for perimeter bearing walls, the only requirement is to remove the EPS in the bottom of the beam for the width of the bearing surface sloping up away from bearing at 45 degrees. EPS must be removed to transfer loads from the floor system to the beam.

The use of a wood is subject to dimensional shrinkage and decay is not recommended for permanent support of a suspended concrete slab.
Many different steel sections and connection details can be used with Fortruss, and will depend on the design and construction.

Steel beam sections should be designed and approved by a locally licensed structural engineer.

FORTRUSS BEARING ON TOP OF STEEL BEAM

When the Fortruss beams are continuous over the steel beam support shoring and the Fortruss floor components are installed as normal.

- In the bearing area of the steel beam remove the EPS in the bottom of the Beam Forms to provide a proper bearing surface.

Flush Beams

Where the steel beam is installed as a flush beam at the edge of the slab, around a slab opening, or to eliminate a dropped beam below the slab, steel profiles with a vertical web and flanges are used.

- Install the Fortruss beams such that the beam end is fit snug and flush against the steel beam.
Using traditional formwork, cast-in-place concrete beams can be built to support Fortruss floors with long spans, or where edge beams are required.

Cast-in-place beams built flush to the underside of the Beam Forms will maintain a constant ceiling height. In this case, cast-in-place beams will be deeper than the Fortruss beams 3 or 5 inches depending on the thickness of the underside of the Beam Forms. As a result, steel conflict between the floor and edge beams will be minimal.

However, the size of the cast-in-place beam can vary depending on the floor spans, and loading conditions. Below are typical installation methods.

CAST-IN-PLACE EDGE BEAMS

- Form the underside of the edge beam with lengths of 2x8 or 2x10 lumber.
- Rest the ends of the Fortruss Beam Forms on the lumber and screw the lumber to the Fortruss Beam Form to keep it in place.

 This will make the underside of both the edge beam and Fortruss Beam Forms flush. A screw is installed up through the lumber form into the metal jacket of the Beam Form to hold it in place. Use a screw at least 2.5 inches long to ensure it penetrates into the Beam Form by at least 1 inch.

- Use ply form, or Blockout Panels, to fill the space between the Fortruss Beam Forms.
- Use ply form to form the opposite side of edge beams. The ply form must be braced for added support.
If the slab is placed at the same time as the beams it is easy to form an offset in the outside ply form to create an overhanging slab and drip ledge. This can also be formed onto the concrete edge beam after temporary forms have been removed before the slab is placed. The same temporary form work can be constructed around openings or cantilevers to support and strengthen the suspended slab.

FLUSH BEAMS WITHIN FLOOR SPAN

- Use a 2 x 8, 2 x 10, or 2 x 12 length of lumber (depending on the size of the beam) to form the under side of the flush beam.
- Rest the ends of the Fortruss Beam Form on opposite sides of the both sides of the lumber, and screw the lumber to the underside of the Fortruss Beam Forms to hold it in place.
- Install the Floor Panels flush with the Beam Form ends.
- Use ply form, or Blockout Panels, to fill the space between the Fortruss Beam Form components.
- Install the reinforcement for the edge and floor beams, as required by design.

Sleeves can be installed to allow penetrations through flush beams where mechanical or electrical runs may be required. The sleeves should be located at mid-height of flush beams, and should only be placed based on engineering review and approval.
The use of treated lumber or engineered wood beams for mid-span support is possible. However, wood beams should not come in direct contact with concrete, or where moisture can be trapped between the wood and concrete.

In most applications, wood beams would be used only to support Fortruss floors with long spans, and where the Fortruss beams are bearing on the wood beam.

- Remove the EPS in the bottom of the beam component to provide a proper bearing surface.
Service penetrations and attachments can be easily accommodated.

Typically, the foam thickness of the Beam Forms and Floor Panles are thick enough to accommodate service penetrations and attachments that won’t run through the concrete itself, or compromise floor to ceiling clearances.
2.3.10.1 – SERVICE PENETRATIONS

Penetrations can be created using a hole saw to cut through the metal jacket. A plumbing pipe used as a hand drill can be used to cut a hole through the foam material.

- When making a penetration through the Beam Forms, cut a hole slightly larger than the hole cut through the foam material. This will prevent the metal jacket from damaging pipes.
- Beam Forms with thicker form bottoms can be used to accommodate larger service penetrations.
The metal jacket of the Beam Forms provide ample attachment for drywall, lighting and other fixtures.

- The space between the Beam Forms provide ample clearance for service utilities without compromising ceiling height. Shallow light fixtures can also be installed to the underside of the Beam Forms.
- Fixtures can be mounted directly to the Beam Forms.
- Air vents and other service pipes can be strapped directly to the Beam Forms.
- Wiring can be stapled directly to the underside of the Floor Panels with EPS pex staples.
- Metal wall studs cut to size, can bridge across Beam Forms to help support service pipes.
Waterproofing may be required for slabs exposed to potentially wet conditions such as suspended garage slabs.

A waterproof sealer is a common approach to treating suspended slabs. There are many products that can do the job, and application of the sealer should be based on the manufacturer’s instructions.

Generally, the surface of the concrete slab must be clean and free of debris before applying the sealer. In addition, the slab should be sloped, and drainage installed to direct water away.

For more information contact your local Beave Plastics representative.